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Abstract

In 1827, the German mathematician Carl Friedrich Gauss proved a
major result in the field of Differential Geometry. This theorem, which
would become known as Gauss’ Theorema Egregium1, is the focus of
this essay. We develop the theory leading up to the theorem, and
conclude with some of its interesting applications.
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1 The First Fundamental Form

1.1 Surfaces and Tangent Planes

Surfaces in R3 were first introduced in MA259: Multivariable Calculus.
Here, we recall some basic definitions before moving on to more advanced
concepts.

Definition 1.1. A set S ⊂ R3 is called a surface if, for all points p ∈ S,
there exist open sets V ⊂ R2 and W ⊂ R3 such that p ∈ W and the sets V
and S ∩ W are homeomorphic.

These homeomorphisms σ : V → S ∩ W are known as surface patches.
They can be represented visually as follows:

Figure 1: Visual representation of a surface patch.

Where there is no possibility for ambiguity, we will use the terms surface
patch and parametrisation interchangeably.

For the purposes of this essay, we are especially interested in surface
patches that are regular.

Definition 1.2. Suppose σ : V → S ∩ W is a surface patch given by

σ(u, v) := (x(u, v), y(u, v), z(u, v)).

Then σ is called smooth if it has continuous partial derivatives of all orders.
It is called regular if it is smooth, and its first partial derivatives, denoted
by σu and σv, are linearly independent for all p = (u, v) ∈ V .2

With this definition in mind, we will say that a surface S is regular
if for every point p ∈ S, there exists a neighbourhood of p that can be
parametrised by a regular surface patch.

Much like we defined tangent lines for regular curves, we can also define
tangent planes for regular surfaces:

2Throughout this essay, whenever we write σu or σv we actually mean σu(p) and σv(p)
respectively.
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Definition 1.3. Given a regular surface S ⊂ R3 and a point p ∈ S, we
define the tangent plane at p to be the set of all vectors tangent to S at p.
We denote this plane by TpS.

The above definition is not very useful in practice. As such, we seek to
characterise tangent planes in terms of surface patches, which we can do by
the following lemma:

Lemma 1.4. Let S ⊂ R3 be a regular surface. For an arbitrary point
p ∈ S, let σ be a surface patch whose image contains p. It follows that
TpS = span{σu, σv}.

Proof. Consider a curve C on the surface S which passes through p, and is
parametrised regularly by γ : I → R3. If we think of u and v as functions,
we may write γ(t) = σ (u(t), v(t)), which we then differentiate using the
chain rule:

γ′(t) = u′(t)σu + v′(t)σv.

Since p ∈ C, there exists t0 ∈ I such that γ(t0) = p. Hence, γ′(t0) is a tangent
vector to C at p, and so γ′(t0) ∈ TpS. Moreover, γ′(t0) = u′(t0)σu+v′(t0)σv,
so this tangent vector is a linear combination of σu and σv. The set of
all such linear combinations is precisely the span of σu and σv, so γ′(t0) ∈
span{σu, σv}. Since S is regular, this span will be two-dimensional, that is,
a plane. As we vary over all such curves C, we obtain all the tangent vectors
at p (up to scaling). Therefore, TpS = span{σu, σv}, as required.

1.2 The First Fundamental Form

We reach the crux of this section: the first fundamental form. This arises
naturally as the canonical inner product on the tangent plane of a regular
surface. More formally:

Definition 1.5. Given a regular surface S and a point p ∈ S, the first
fundamental form of S at p is the inner product denoted by I and defined
by:3

I : TpS × TpS → R,
(x,y) 7→ ⟨x,y⟩.

Since our ground field is R, this inner product is a symmetric bilinear
form. Hence, for a given basis of TpS, it can be represented by a symmetric
2× 2 matrix. In general, we have:

I(x,y) = xT

(
E F
F G

)
y, (1)

3Many sources define the first fundamental form as the quadratic form Q : TpS → R
given by Q(x) := I(x,x). The two definitions are essentially equivalent.
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where E,F and G are called the coefficients of the first fundamental form.
More specifically, suppose that a point p ∈ S is parametrised by the surface
patch σ. By Lemma (1.1), the set {σu, σv} is a basis of TpS, and therefore
gives rise to a corresponding coefficient matrix.

The following lemma allows us to derive expressions for these coefficients
in terms of σ:

Lemma 1.6. Let I be the first fundamental form of a regular surface S ⊂ R3,
and let p ∈ S be a point parametrised by σ. The coefficients of I at p are
given by:

E = ⟨σu, σu⟩, F = ⟨σu, σv⟩, G = ⟨σv, σv⟩.

Proof. Let w1,w2 ∈ TpS be arbitrary. By Lemma (1.1), there exist scalars
α, β, γ, δ ∈ R such that w1 = ασu + βσv and w2 = γσu + δσv. Therefore,

I(w1,w2) = ⟨w1,w2⟩
= ⟨ασu + βσv, γσu + δσv⟩
= αγ⟨σu, σu⟩+ (αδ + βγ)⟨σu, σv⟩+ βδ⟨σv, σv⟩

=
(
α β

)(⟨σu, σu⟩ ⟨σu, σv⟩
⟨σu, σv⟩ ⟨σv, σv⟩

)(
γ
δ

)
= wT

1

(
⟨σu, σu⟩ ⟨σu, σv⟩
⟨σu, σv⟩ ⟨σv, σv⟩

)
w2.

Comparing this with the expression in (1), we obtain the desired result.

It may not be obvious from its definition why the first fundamental
form is so important. As we will soon prove, it is preserved by certain
transformations known as local isometries, which we now define:

Definition 1.7. Let S and S̃ be two surfaces, and let γ be a curve in S. A
local isometry is a function d : S → S̃ which maps γ to a curve γ̃ = d ◦ γ of
the same length in S̃. If such a function d exists, the surfaces S and S̃ are
called locally isometric.

Theorem 1.8. Local isometries preserve the first fundamental form.

Proof. Let S and S̃ be two isometric surfaces which are parametrised by σ
and σ̃ respectively. Moreover, let d : S → S̃ be an isometry between the two
surfaces. By definition of d, a curve in S is mapped to a curve of the same
length in S̃. Therefore, following the discussion in Section B.1 we have that∫

I

[
E(u′(t))2 + 2Fu′(t)v′(t) +G(v′(t))2

]1/2
dt

and ∫
I

[
Ẽ(u′(t))2 + 2F̃ u′(t)v′(t) + G̃(v′(t))2

]1/2
dt
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are equal for all curves and for all intervals. Therefore, we differentiate to
obtain that [

E(u′(t))2 + 2Fu′(t)v′(t) +G(v′(t))2
]1/2

and [
Ẽ(u′(t))2 + 2F̃ u′(t)v′(t) + G̃(v′(t))2

]1/2
are equal. By simplifying and equating coefficients:

E = Ẽ, F = F̃ , G = G̃.

Therefore, the first fundamental forms of S and S̃ are the same.

1.3 Intrinsic Properties of a Surface

A number of properties—the so-called intrinsic properties—are completely
determined by the first fundamental form of a surface. One of these in
particular, the Gaussian curvature, will be the main focus of this essay in
Sections 2.4 and 3. However, a number of other intrinsic properties are also
interesting in their own right, which is why we’ve dedicated Appendix B to
exploring them further.

2 Curvature of a Surface

2.1 Normal Vectors, Orientability, and the Gauss Map

In MA134: Geometry & Motion we saw that a curve C, parametrised by
γ : [a, b] → R, can be thought of as having a certain orientation: that is,
starting from γ(a) and ending at γ(b). In particular, that orientation was
closely related to its principal normal vectors N. We wish to generalise this
notion to surfaces.

Definition 2.1. Let S2 := {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} be the unit
2-sphere, and let S ⊂ R3 be a regular surface. Then S is called orientable if
there exists a continuous vector field N : S → S2, such that N(p) is normal
to TpS for all p ∈ S. This vector field N is called the Gauss map acting on
S.

The requirement that N be continuous allows us to consistently assign a
unit normal vector to each point in S. In particular, if p ∈ S is parametrised
by σ then there are two such vectors at p, given by

± σu × σv
|σu × σv|

.

We are free to choose either one as the value of N(p), provided that the
resulting vector field is continuous.
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An example of a surface where such an assignment is not possible is the
Möbius strip [Figure 2].4

Figure 2: A Möbius strip: the simplest non-orientable surface.

Note that, given an orientable surface S, the choice of orientation is not
unique: indeed, if p 7→ N(p) is a Gauss map, then p 7→ −N(p) is also a
Gauss map. To avoid any ambiguity, we introduce the distinction between
orientable and oriented surfaces:

Definition 2.2. A surface S ⊂ R3 is called oriented if it comes equipped
with a Gauss map N .

We also make the following observation: for a regular and oriented sur-
face S ⊂ R3, the vectors σu, σv and N are all linearly independent, and
hence form a basis of R3.

The Gauss map is also special in a different way: since it maps points
to normal vectors, its Jacobian matrix defines a linear endomorphism on
the tangent plane of a surface. This detail will be crucial in defining the
Weingarten map in the following section.

2.2 The Weingarten Map5

Having established rigorous definitions of normal vectors and orientation,
we now move on to defining curvature. Returning to our previous analogy,
we observe that the curvature of a space curve is closely related to the rate
of change of its normal vectors. This is evident, for example, from the
Frenet–Serret formulæ corresponding to that curve.

Definition 2.3. Let S ⊂ R3 be a regular and oriented surface with Gauss
map N , and let p ∈ S be arbitrary. The Weingarten map of S at p is the
function Wp,S : TpS → TpS defined by:

4Readers are encouraged to craft their own Möbius strip from a rectangular piece of
paper and convince themselves of this fact.

5Named after the German mathematician Julius Weingarten (1836–1910). He made
important contributions to the differential geometry of surfaces.
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Wp,S(v) := −∂N(p)v,

where ∂N(p) is the Jacobian matrix of N at p.6

The Weingarten map is clearly a linear map. Therefore, a natural next
step is to examine its eigenvalues, its determinant, and its trace. As we will
see, each of these corresponds to a different type of curvature. Before we
do this however, it is necessary to establish that its eigenvalues are actually
real numbers.

2.3 The Second Fundamental Form

The aim of this section is to prove that the eigenvalues of the Weingarten
map are always real. To do this, we first define another bilinear form on the
tangent plane of a surface: the second fundamental form.

Definition 2.4. Given a regular, oriented surface S with Weingarten map
Wp,S , the second fundamental form of S at p is the bilinear form denoted
by II and defined by:7

II : TpS × TpS → R
(x,y) 7→ I(Wp,S(x),y),

where I is the first fundamental form of S at p.

We asserted in its definition that II is a bilinear form, so let’s actually
prove it:

Lemma 2.5. The second fundamental form is a bilinear form.

Proof. Let v,v1,v2 ∈ TpS and α, β ∈ R be arbitrary. We have that:

II(αv1 + βv2,v) = I(Wp,S(αv1 + βv2),v)

= I(αWp,S(v1) + βWp,S(v2),v)

= α I(Wp,S(v1),v) + β I(Wp,S(v2),v)

= α II(v1,v) + β II(v2,v).

Similarly,

II(v, αv1 + βv2) = I(Wp,S(v), αv1 + βv2)

= α I(Wp,S(v),v1) + β I(Wp,S(v),v2)

= α II(v,v1) + β II(v,v2).

6The minus sign in the definition is simply a matter of convention: it has become
standard in the literature because it makes some calculations slightly easier.

7The curious reader might wonder if there is a third fundamental form. Indeed there
is, but it is not as important as the first two, and we will not be dealing with it here.
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Lemma 2.6. Let p ∈ S be a point parametrised by σ. The following expres-
sions hold:

II(σu, σu) = ⟨N(p), σuu⟩,
II(σu, σv) = ⟨N(p), σuv⟩,
II(σv, σu) = ⟨N(p), σvu⟩,
II(σv, σv) = ⟨N(p), σvv⟩,

where ⟨−,−⟩ is the standard inner product on R3.

Proof. From the definition of the Gauss map, it follows that

⟨N(p), σu⟩ = 0 = ⟨N(p), σv⟩.

Using the product rule, we differentiate the first equality with respect to u
to obtain

⟨Nu(p), σu⟩+ ⟨N(p), σuu⟩ = 0.

Therefore:

⟨N(p), σuu⟩ = −⟨Nu(p), σu⟩
= ⟨−∂N(p)σu, σu⟩
= ⟨Wp,S(σu), σu⟩
= I(Wp,S(σu), σu)

= II(σu, σu).

This proves the first expression. The other three follow similarly by differ-
entiating each of the two equalities with respect to u and v.

Corollary 2.7. The second fundamental form is symmetric.

Proof. We have assumed that S is regular, so its second-order partial deriva-
tives exist and are continuous. Clairaut’s theorem, together with Lemma
2.2, implies that II(σu, σv) = II(σv, σu). Now, suppose that v1,v2 ∈ TpS are
arbitrary tangent vectors. By Lemma 1.1, {σu, σv} is a basis of TpS, so there
exist scalars α, β, γ, δ ∈ R such that v1 = ασu + βσv and v2 = γσu + δσv.
Therefore:

II(v1,v2) = II(ασu + βσv, γσu + δσv)

= αγ II(σu, σu) + αδ II(σu, σv) + βγ II(σv, σu) + βδ II(σv, σv)

= αγ II(σu, σu) + αδ II(σv, σu) + βγ II(σu, σv) + βδ II(σv, σv)

= II(γσu + δσv, ασu + βσv)

= II(v2,v1).

Hence II is symmetric, as required.
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Corollary 2.8. The Weingarten map Wp,S is a self-adjoint linear operator
with respect to the first fundamental form.

Proof. Let v,w ∈ TpS be arbitrary. We have that:

I(Wp,S(v),w) = II(v,w) = II(w,v) = I(Wp,S(w),v) = I(v,Wp,S(w)).

It follows that the eigenvalues of Wp,S are real numbers, since all self-
adjoint linear operators have real eigenvalues.

Much like the first fundamental form, the second fundamental form can
also be represented by a symmetric 2× 2 matrix:

II(x,y) = xT

(
L M
M N

)
y, (2)

where L,M and N are called the coefficients of the second fundamental
form.

Given a specific parametrisation σ, we can then find explicit expressions
for L,M and N :

Lemma 2.9. Let S ⊂ R3 be a regular and oriented surface with Gauss map
N . Suppose further that p ∈ S is parametrised by σ. The coefficients of II
at p are given by:

L = −⟨Nu, σu⟩, M = −⟨Nu, σv⟩ = −⟨Nv, σu⟩, N = −⟨Nv, σv⟩.

Proof. Our proof will mimic that of Lemma 1.2. Let w1,w2 ∈ TpS be
arbitrary. By Lemma 1.1, there exist scalars α, β, γ, δ ∈ R such that w1 =
ασu + βσv and w2 = γσu + δσv. Therefore,

II(w1,w2) = II(ασu + βσv, γσu + δσv)

= αγ II(σu, σu) + (αδ + βγ) II(σu, σv) + βδ II(σv, σv).

By Lemma 2.2, this is equal to

= +αγ⟨N(p), σuu⟩+ (αδ + βγ)⟨N(p), σuv⟩+ βδ⟨N(p), σvv⟩
= −αγ⟨Nu(p), σu⟩ − (αδ + βγ)⟨Nu(p), σv⟩ − βδ⟨Nv(p), σv⟩

=
(
α β

)(−⟨Nu(p), σu⟩ −⟨Nv(p), σu⟩
−⟨Nu(p), σv⟩ −⟨Nv(p), σv⟩

)(
γ
δ

)
= wT

1

(
−⟨Nu(p), σu⟩ −⟨Nv(p), σu⟩
−⟨Nu(p), σv⟩ −⟨Nv(p), σv⟩

)
w2.

Comparing this with the expression in (2), we obtain the desired result.
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2.4 Principal, Mean, and Gaussian Curvatures

In what follows, S is a regular and oriented surface with Gauss map N and
Weingarten map Wp,S at the point p ∈ S.8

Definition 2.10 (Principal Curvatures). The principal curvatures of S at
p are denoted by κ1 and κ2, and are precisely the eigenvalues of Wp,S . By
Corollary (2.2), they are both real numbers.

Definition 2.11 (Mean Curvature). The mean curvature of S at p is de-
noted by κH and is defined by:9

κH :=
1

2
trace(Wp,S) =

κ1 + κ2
2

.

Definition 2.12 (Gaussian Curvature). The Gaussian curvature of S at p
is denoted by κG and is defined by:

κG := det(Wp,S) = κ1κ2.

Note that we have not specified a choice of basis for the Weingarten map.
Since this map is a linear endomorphism, it turns out that both its trace
and determinant are independent of the choice of basis. This ensures that
the curvatures defined are indeed unique.

When first defining the Weingarten map, we noted that the minus sign
in its definition was a matter of convention. Here we see that, as far as the
Gaussian curvature is concerned, it makes no difference. In fact, this im-
portant observation allows us to define Gaussian curvature even for certain
surfaces that are not orientable!

3 Gauss’ Remarkable Theorem

In this section we work up to, and eventually prove, Gauss’ celebrated the-
orem. First, we state two preliminary results. Their proofs involve several
tedious—but not complicated—calculations, which we omit. The interested
reader can find detailed proofs in [1], under propositions 7.4.4 and 10.1.2
respectively.

For simplicity, we assume throughout that S ⊂ R3 is a regular and
oriented surface with Gauss map N. Moreover, we assume that the point
p ∈ S is parametrised by σ, and that the first and second fundamental forms
of S at p are given by (1) and (2) respectively.

8We have suppressed the point p from the notations used for the curvatures. This will
be clear from the context when necessary.

9Although not the focus of this essay, the mean curvature is important in the study of
so-called minimal surfaces, such as soap films.
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Lemma 3.1. Let S be the surface described above. The second partial
derivatives of σ are given by the equations:

σuu = Γ1
11σu + Γ2

11σv + LN,

σuv = Γ1
12σu + Γ2

12σv +MN,

σvv = Γ1
22σu + Γ2

22σv +NN,

where the Γk
ij are the six Christoffel10 symbols, which are defined by:

Γ1
11 :=

GEu − 2FFu + FEu

2(EG− F 2)
, Γ2

11 :=
2EFu − EEu − FEu

2(EG− F 2)
,

Γ1
12 :=

GEv − FGu

2(EG− F 2)
, Γ2

12 :=
EGu − FEv

2(EG− F 2)
,

Γ1
22 :=

2GFv −GGu − FGv

2(EG− F 2)
, Γ2

22 :=
EGv − 2FFv + FGu

2(EG− F 2)
.

Before we move on, let’s make a few remarks about this lemma. First,
observe that {σu, σv,N} is a basis of R3. This lemma thus allows us to find
explicit expressions for the coefficients of σuu, σuv = σvu and σvv in this basis.
Second, the Christoffel symbols are only defined when EG − F 2 ̸= 0, that
is, when the first fundamental form has non-zero determinant. If, however,
EG−F 2 is equal to zero, one can show that the Gaussian curvature at the
point p is equal to zero. Finally, the Christoffel symbols only depend on
the coefficients of the first fundamental form (and their partial derivatives).
This fact will become important later.
We also establish the following set of equations:

Lemma 3.2. Let S be the surface described above, and let κG be its Gaussian
curvature at the point p ∈ S. We have that:

κGE = (Γ2
11)v − (Γ2

12)u + Γ1
11Γ

2
12 + Γ2

11Γ
2
22 − Γ1

12Γ
2
11 − (Γ2

12)
2,

κGF = (Γ1
12)u − (Γ1

11)v + Γ1
12Γ

2
12 − Γ2

11Γ
1
22,

κGF = (Γ2
12)v − (Γ2

22)u + Γ1
12Γ

2
12 − Γ2

11Γ
1
22,

κGG = (Γ1
22)u − (Γ1

12)v + Γ1
11Γ

1
22 + Γ1

12Γ
2
22 − Γ2

12Γ
1
22 − (Γ1

12)
2.

With the above lemmas, we are now ready to state and prove Gauss’
Remarkable Theorem!

Theorem 3.3 (Theorema Egregium). The Gaussian curvature of a regular
and orientable surface is an intrinsic property of that surface.

10Named after the German mathematician Elwin Bruno Christoffel (1829–1900).
Among his many contributions was the laying out of the mathematical foundation for
general relativity.
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Proof. If E = F = G = 0, then the determinant of I at p equals zero, so
κG = 0. Suppose that at least one of E,F,G is non-zero, and consider the
corresponding equation established in Lemma (3.2). Next, substitute the
expressions for the Christoffel symbols defined in Lemma (3.1) and solve for
κG. Since the Christoffel symbols only depend on the coefficients of I, the
same is true for κG. Therefore, κG is an intrinsic property of the surface,
according to the definition in Section 1.3.

One might wonder if we can get multiple expressions for the Gaussian
curvature using different equations from Lemma (3.2). It turns out that all
of these are equal to each other. This unique expression is known as the
Brioschi11 formula, and is given by:

κG =

∣∣∣∣∣∣∣
−1

2Evv + Fuv − 1
2Guu

1
2Eu Fu − 1

2Ev

Fv − 1
2Gu E F

1
2Gv F G

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣

0 1
2Ev

1
2Gu

1
2Ev E F
1
2Gu F G

∣∣∣∣∣∣∣
(EG− F 2)2

.

4 Applications & Conclusion

In the final section of this essay, we present two interesting applications
of Gauss’ theorem. These illustrate the wide-ranging applicability of this
theorem, both in pure and applied mathematics.

4.1 Maps of the Earth

We use the unit sphere S2 := {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} to model
the Earth, and the xy-plane Πz := {(x, y, z) ∈ R3 : z = 0} to model a flat
sheet of paper.
Let σ1(u, v) = (sinu cos v, sinu sin v, cosu) and σ2(u, v) = (u, v, 0). We as-
sign Gauss maps to both surfaces as follows:

N1(p) := p and N2(p) := (0, 0, 1).

Next, we find the matrices for the Weingarten maps. Consider S2 first: let
γ1 be an arbitrary smooth curve on S2 such that γ1(0) = p and γ′1(0) = v.
It follows that:

Wp,S2(v) = − d

dt
N1(γ1(t))

∣∣∣
t=0

= −γ′1(0) = −v.

Therefore,

Wp,S2(v) =

(
−1 0
0 −1

)
v.

11Named after the Italian mathematician Francesco Brioschi (1824–1897).
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Now for Πz, note that N2 is constant, so the matrix for Wp,Πz will be the
zero matrix:

Wp,Πz(v) =

(
0 0
0 0

)
v = 0.

Therefore, the Gaussian curvatures will be equal to 1 and 0, for the sphere
and the plane respectively.

Suppose there were a local isometry between S2 and Πz. Both surfaces
would then have the same first fundamental form. Therefore, they would
also have the same Gaussian curvature, by Gauss’ Theorema Egregium. This
is a contradiction, so the two surfaces are not locally isometric.

This explains why it’s not possible to make a map of the Earth on a flat
sheet of paper which preserves distances between all points.

4.2 The Three Classical Geometries

In the previous application, we saw that the unit sphere has Gaussian cur-
vature equal to 1, and that a plane has Gaussian curvature equal to 0. Now,
consider the 2-dimensional hyperbolic plane defined by:12

H2 := {(x, y, z) ∈ R3 : x2 + y2 − z2 = −1 ∧ z > 0}.

Following a similar calculation as before, we can deduce that this surface
has constant Gaussian curvature equal to −1.

Figure 3: The three types of curvature.

The three surfaces are pictured above. The three values for curvature cre-
ate a trichotomy of sorts: surfaces with positive Gaussian curvature are
called spherical, those with zero Gaussian curvature are called developable
(or parabolic), and those with negative Gaussian curvature are called hyper-
bolic.
The concept of Gaussian curvature may be generalised to higher-dimensional
manifolds. In this broader framework, this trichotomy forms the basis for the

12In the study of quadratic forms, this surface is the upper-half of a hyperboloid of two
sheets.
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three classical geometries: spherical, Euclidean, and hyperbolic geometry
respectively.

Appendix A Necessary Background

In this first appendix, we provide a brief review of several basic definitions
and results that should be familiar from first- and second-year modules.
Additionally, we establish a consistent notation that will be used throughout
this essay.

A.1 Linear and Multilinear Algebra

Let V be a vector space over some ground field K.

Definition A.1. A bilinear form on V is a map τ : V × V → K satisfying
the following two properties:

(i) τ(αv1 + βv2, v) = ατ(v1, v) + βτ(v2, v),

(ii) τ(v, αv1 + βv2) = ατ(v, v1) + βτ(v, v2)

for all v, v1, v2 ∈ V and for all α, β ∈ K.

Especially useful in our study of surfaces are the so-called symmetric
bilinear forms:

Definition A.2. A bilinear form is called symmetric if, in addition to prop-
erties (i) and (ii), it also satisfies:

(iii) τ(v1, v2) = τ(v2, v1)

for all v1, v2 ∈ V .

Given a bilinear form, one can then define the corresponding quadratic
form as follows:

Definition A.3. Let τ : V ×V → K be a bilinear form. The corresponding
quadratic form is the map q : V → K defined by:

q(x) := τ(x, x).

A.2 Topology

Definition A.4. A set U ⊆ Rn is defined to be open if, for all x ∈ U , there
exists ε > 0 such that y ∈ U whenever y ∈ Rn and |x− y| < ε.

Definition A.5. A set X ⊆ Rn is defined to be closed if the set Rn \X is
open.
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Definition A.6. Two topological spaces (X, TX) and (Y, TY ) are said to
be homeomorphic if there exists a function f : X → Y , called a homeo-
morphism, such that f is continuous, invertible, and f−1 : Y → X is also
continuous.

A.3 Multivariable Calculus and Differential Geometry

Definition A.7. Let U be an open subset of Rn, and let f : U → Rk be a
vector-valued function defined by f(x) := (f1(x), . . . , fn(x))

T , whose partial
derivatives exist and are continuous. The Jacobian matrix of f at x is then
denoted by ∂f(x) and defined by:

∂f(x) :=

∂1f1(x) · · · ∂nf1(x)
...

...
∂1fk(x) · · · ∂nfk(x)

 .

Moreover, the Jacobian determinant is defined to be the determinant of
the Jacobian matrix.

Theorem A.8 (Clairaut’s Theorem). Let U be an open subset of Rn, and
let f : U → R be a function whose partial derivatives up to order 2 all exist
and are continuous. Then ∂i∂jf(x) = ∂j∂if(x) for all i, j ∈ {1, . . . , n}.

Definition A.9. Let I ⊆ R be an interval, and let γ : I → Rk be a con-
tinuous vector-valued function defined by γ(t) := (γ1(t), . . . , γk(t)), where
each component γi is a continuous real-valued function. Then the image of
γ, denoted by im(γ), is called a curve in Rk, and the function γ is called its
parametrisation.13

Theorem A.10 (Frenet–Serret Formulæ). For a unit-speed curve in R3

with non-zero curvature, we have the following system of equations:T′

N′

B′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

T
N
B

 ,

where T,N, and B are the unit tangent, principal normal, and binormal
vectors respectively, and κ and τ are the curvature and torsion, respectively.
Together, T,N, and B form an orthonormal basis of R3.

13For practical purposes, we may refer to γ as both the parametrisation and the curve
itself. In such cases, we really mean that im(γ) is the curve. That is, we think of curves
as subsets of Rk.
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Appendix B Intrinsic Properties

In Section 1.3, we defined the intrinsic properties of a surface to be those
that are completely determined by the first fundamental form. In this second
appendix, we present some examples of such properties and explain why they
are so important.

B.1 Lengths of Curves

Recall that the length of a smooth curve parametrised regularly by γ :

[a, b] → R3 is given by the integral∫ b

a
|γ′(t)|dt.

Suppose now that this curve lies on a regular surface S, parametrised by σ.
We can then write

γ(t) = σ(u(t), v(t)),

from which it follows that

γ′(t) = σu(t)u
′(t) + σv(t)v

′(t).

Hence,

|γ′(t)|2 = ⟨γ′(t), γ′(t)⟩
= ⟨σu, σu⟩(u′(t))2 + 2⟨σu, σv⟩u′(t)v′(t) + ⟨σv, σv⟩(v′(t))2.

Therefore, the length of the curve is equivalently given by∫ b

a

[
E(u′(t))2 + 2Fu′(t)v′(t) +G(v′(t))2

]1/2
dt.

Since this expression only depends on the coefficients of I, we conclude that
the length of a curve on a surface is an intrinsic property of that surface.

B.2 Areas of Regions

Let S be a regular surface. Recall again that the area of a region S ∩ W
parametrised by σ : U → S ∩ W is given by the surface integral∫∫

U
|σu × σv|dudv.

We use the following identity from vector calculus:

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).
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Suppose now that a = c = σu and b = d = σv. It follows that

|σu × σv|2 = EG− F 2.

Therefore, the length of the region S ∩ W is equivalently given by∫∫
U

√
EG− F 2dudv.

Once again, this expression only depends on the coefficients of I, so the area
of a region on a surface is also an intrinsic property.
The above identity also shows that EG − F 2 ⩾ 0, so no issues arise when
considering its square root.

B.3 Angles Between Curves

Consider a regular surface S and two intersecting curves, γ1 and γ2, which
lie on S. Suppose that their point of intersection, say p, is parametrised by
σ. We wish to find the angle at which these two curves intersect. This is
equal to the angle between the two tangent vectors at p. Moreover, these
tangent vectors can be expressed as a linear combination of σu and σv, so
it suffices to find the angle between these vectors. Let this angle be θ. We
have:

⟨σu, σv⟩ = |σu||σv| cos θ

=⇒ F =
√
EG cos θ.

Since |σu|, |σv| ≠ 0,

cos θ =
F√
EG

,

and we are done. This last assumption is justified because the concept of
an angle is only well-defined for non-zero vectors.
Note that Theorem (1.1) implies that these three properties are preserved
between locally isometric surfaces. This often gives us elegant ways of cal-
culating them; for example, by comparing one surface with a second one
which is locally isometric, but simpler to work with.
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This essay draws inspiration from the following sources, but does not
take the approach of any one in particular. All images and diagrams were
produced using the Python programming language.
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